

A project initiative of the Victorian dairy industry proudly sponsored by the Gardiner Dairy Foundation in partnership with Monash University

Monash Industry Team Initiative (MITI) 2015-2016

Innovative Liquid Milk Beverage

Supervised by: Ekta Datoo and Cameron Dellar

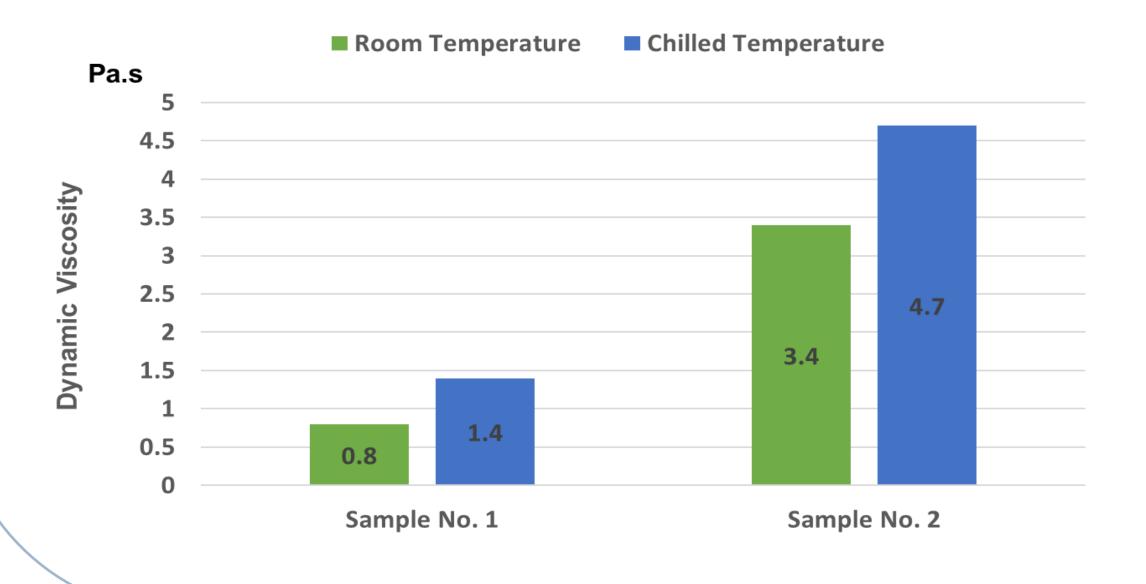
Jason Schulz - BSc/BChemEng
Ruohui Lin - PhDEng
Vi Nguyen - BBiomedSc/BChemEng

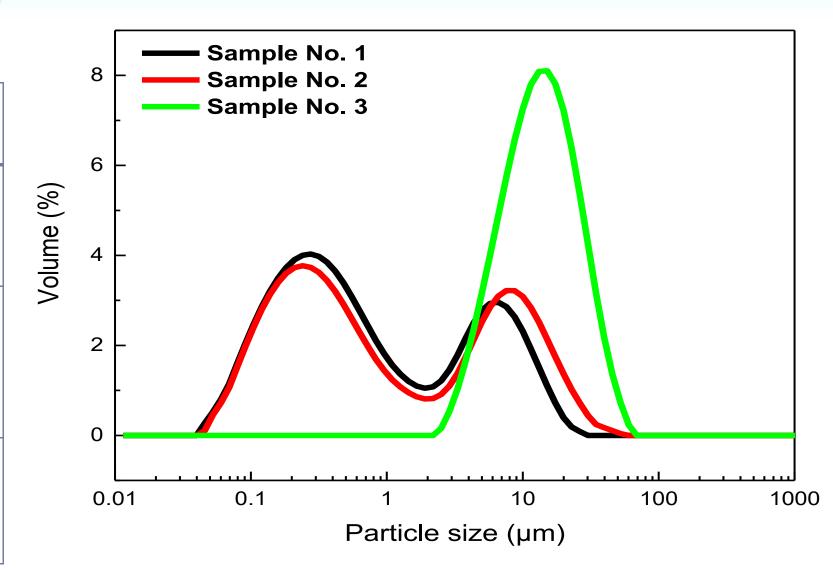
1. Project Aim and Background

"Yoghurt Drinks" are rising in popularity.

The aims of our project were:

- Development of a formulation of "Yoghurt Drink" with a pleasant yoghurt flavour and a creamy smooth texture.
- Development of targeted formulae would be determined based on taste, mouthfeel and viscosity.
- . Design of a manufacturing process based on the principle of yoghurt making within current factory limitations.
- Preparation of laboratory prototypes for evaluation prior to scale up in pilot plant.


2. Approaches Market research (including sensory evaluation) Lab development based on target sensory parameters Pilot trials of best candidate formulations


Sample analysis and evaluation

3. Experimental Methods and Results

Sample Number	Ingredients	рН	Sensory Test	Stability
1	Pectin A +Alginate	4.3	Thin, smooth texture with typical yoghurt flavour	Stable for over 30 days, no syneresis
2	Pectin A + Alginate +Starch	4.3	Thick, smooth with slightly starch flavour	Stable for over 30 days, no syneresis
3	Pectin B +Alginate	4.4	Thin and grainy	The product split after two days

- . Correlation between mouthfeel and particle size was established. (Smooth: 0.5 to 3 $\,\mu m; \,$ Grainy: > 10.0 $\,\mu m)$
- . Sample No. 1 and No. 2 displayed a non-grainy taste due to the majority of the particles being < 10 μm .
- The addition of starch made Sample No.2 thicker.

 However, the differences in viscosity were not observed to affect the particle size distribution.
- Sample No. 3 was not further developed due to instability and graininess. No further measurement was performed on this sample.
- · Yoghurt Drinks were found to shear thin.

4. Conclusions

- . Two successful Yoghurt Drink formulations were developed.
- Final Yoghurt Drink achieved the desired taste, texture and mouthfeel defined in project aims.
- . The designed process worked well and could be easily adopted by the factory with minimum modifications to existing production systems.
- Not all pectins worked best in Yoghurt Drink making. The sensory evaluation and particle size analysis confirmed that the Pectin A worked well.
- . Starch was a suitable thickener for Yoghurt Drinks.

5. Acknowledgements

- Our industrial supervisors: Ekta Datoo and Cameron Dellar.
- Technical assistance from Devondale Murray Goulburn: Tran Truong and Laura Baker.
- Monash Industry Team Initiative, Gardiner Foundation and Devondale Murray Goulburn.