

A project initiative of the Victorian dairy industry proudly sponsored by the Gardiner Dairy Foundation in partnership with Monash University

MONASH INDUSTRY TEAM INITIATIVE (MITI) 2015-16 **IMPROVING MILK TASTE USING INNOVATIVE TECHNOLOGY**

Cameron Gibson (BPharmSc/BchemEng), Nicholas Hardy (BCom/BChemEng) and Krystel Li (PhDEng)

BACKGROUND

- ✤ UHT milk currently accounts for approximately 15% of milk sales in Australia
- The major complaint in Australia is that UHT milk has a 'cooked' flavour compared to fresh milk
- UHT milk has substantial benefits: it can be transported long distances, it lasts longer and does not need to be refrigerated.
- ✤ Approximately 70% of milk consumed in Europe is UHT which indicates that UHT could be a growth industry in Australia

2. SCOPE

- ✤ Improve the flavour of milk products without compromising shelf life
- Reducing the heat load of the UHT process
- Improving heat transfer efficiency for quicker more uniform heating
- Final product must adhere to the definition of milk
- Whey to casein ratio

4. RESULTS & ACHIEVEMENTS

UHT flavour extraction 205g sample, 65 °C, 1.5 hours 44% 56% Fresh flavour extraction 208g sample, 60 °C , 1 hour 42% 58%

Successfully optimised the extraction of both

	Shelf life stabilit	Shelf life stability of membrane processed milk samples			
0	Sample	Accelerated storage time			
		0 month	2 months	4 months	
σ	MF Tubular 140°C	\checkmark	✓	✓	
<u> </u>	MF Tubular 130°C	\checkmark	✓	✓	
╺	MF Tubular 120°C	\checkmark	✓	✓	
	MF Tubular 110°C	\checkmark	✓	×	
4	MF Tubular 100°C	\checkmark	×	×	
0	MF Tubular 90°C	\checkmark	×	×	
	MF PHE 140°C	\checkmark	✓	✓	
U	MF PHE 130°C	\checkmark	✓	\checkmark	
	MF PHE 120°C	\checkmark	✓	\checkmark	
5	MF PHE 110°C	\checkmark	✓	\checkmark	
	MF PHE 100°C	\checkmark	×	×	
•	MF PHE 90°C	\checkmark	×	×	
	Commercial DMG UHT	✓	√	~	
>	Stable Unstable		Stable	Unstable	
Casein precipitation					

✤ A reduction in bacteria concentration of 99.93%

✤ Time to raise temperature from 70°C to 140°C

- flavour from both UHT and fresh milk samples
- ✤ UHT milk adopted fresh flavours through the extraction and removal of cooked flavours followed by the extraction and addition of fresh flavours.
- was achieved by microfiltration
- Successfully produced milk with an extended
- shelf life of more than 4 months using a lower heat load than typical UHT processing
- Unable to improve flavour dramatically
- reduced by 64% using the AHT
- Successfully produced UHT milk with significantly less cooked flavour than commercial UHT milk, with retained fresh flavours
- ✤ 16% energy saving per year when using the AHT

compared to conventional UHT plant

5. CONCLUSION

- Proof of concept was achieved for all three technologies with each proving to be very promising towards improving milk taste
- * The idea behind preserving fresh flavours through reduced heat loads and/or more efficient heat transfer was successfully validated through reduced browning in the samples from each technology.